If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10t^2=60t
We move all terms to the left:
10t^2-(60t)=0
a = 10; b = -60; c = 0;
Δ = b2-4ac
Δ = -602-4·10·0
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-60}{2*10}=\frac{0}{20} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+60}{2*10}=\frac{120}{20} =6 $
| 5-r=1 | | 5x-24=45 | | (r+5/3)=(-16) | | 19a-5+a+5=180 | | 10=3x÷13 | | 2x=-2^7+1 | | 3.3x=15.4 | | 5y*8=6 | | -3j-(-42)=72 | | 12t–10=14t+2t= | | 12t–10=14t+2 | | 12(3x+8)=144 | | 5+a/16=24 | | 44=2(4x+2) | | 49t^2-160t+850=0 | | -2x+29=21 | | 49t^2-160t+50=0 | | 4x+13=2(4x+3)+3 | | 17-3q=94 | | 3x+25=4-4x | | 5(x+3)=-5x-5 | | 37=2+5d | | 4(x+3)-5=x+16 | | -40=5(3x-4)-5 | | 3(5x+4)=-3 | | P-7÷2-12=p-20 | | -7x-16=-3x-20 | | 6x-5x+1=x-2 | | 3^3x+2+3^3x=30 | | 5x=32/3 | | -2y-3+6y+10=-5 | | 8x=50=2x+10 |